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Abstract. In fossil biometry simple ratios between two linear measurements have been frequently applied as

a third variable for representation of the variation of a bivariate character. Theoretically, however, it is obvious

that its frequency distribution is sometimes strongly influenced by the heterogeneity of sample, especially the

age distribution of a fossil population, and is apt to be artificially skewed and platykurtic. In order to analyse I,

the real state of frequency distribution of bivariate characters and to apply further advanced statistical tech-

niques for taxonomic identification and discrimination, it may be necessary to use some other index which is
'

little, or preferably not at all influenced by growth. In this respect the diagonal distance from each point to the

reduced major axis on a double logarithmic scatter diagram may be a more desirable index, if a single power
function represents the relative growth of the organism. The advantage of this method is also recognized

empirically by a comparative study on an actual fossil sample of Glycymeris rotunda from the Pliocene of central

Japan. Somecomments are given as to the definition of isometry and allometry.

Modern palaeontology focuses on the population rather than the individual. A bio-

metrical study of individual variation seems to be important, primarily because it may
offer fundamental and objective information for the consideration of classification and

evolution. There are various kinds of individual variation which are controlled by

different factors. As classified by Mayr, Linsley, and Usinger (1953) and again by Mayr

(1969), some are genetic and the others are non-genetic. Here we intend to discuss

mainly non-sex-associated continuous variation and methods for the representation of

bivariate characters in a population. It is no doubt important to consider from a

biological viewpoint whether the variation is genetic or non-genetic. Unfortunately,

however, the distinction is usually not easy in fossils. Wepresume that such bivariate

characters as are discussed here might be controlled both by genes and environ-

ments.

Various kinds of characters may be used for the representation of continuous varia-

tion. In neontology individual variation can be well recognized on the basis of a uni-

variate character, if the population proves to be composed of individuals of almost the

same age. This method is logically appropriate and certainly applicable also in palaeonto-

logy, if the character does not change as the organism grows. For instance, the number

of simple radial ribs of bivalves can be regarded as a good character. Such characters

are, however, usually restricted to count, whereas linear measurements themselves are

hardly applicable as the growth-invariant index.

Many previous authors have shown histograms of bivariate characters in order to

express the individual variation, taking the simple ratio between pairs of linear measure-

ments as the index. Ratios are, in fact, often more useful than linear measurements in

taxonomy. It is, however, obvious that this conventional method bears some theoretical

difficulties, because such a ratio may change to some extent through the growth of

organism. In this respect the dynamic concept of relative growth should be introduced

in the study of individual variation. We have been devoting ourselves to seek good

indices for the representation of bivariate characters from the standpoint of allometry.

[Palaeontology, Vol. 13, Part 4, 1970, pp. 588-605.]
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As such indices may deserve general application in palaeontology, we intend to discuss

the problem in some detail and to evaluate them on the basis of some actual data.

PROBLEMS

When one intends to discuss the continuous variation of a sample and to apply any

advanced statistical techniques for the estimation of the nature of a population, it may

be necessary as an initial condition to recognize or presume normal frequency distri-

bution of characters. Therefore, one should select the most adequate and meaningful

index for each character especially carefully and strictly in order to represent the varia-

tion with the combination of two variables.

text-fig. 1 . Hypothetical scatter diagram

showing the concept of isometric variation,

where the simple ratio y/x is applied as an index.

di—

a

or tan 0—tan 6 means the deviation for

an arbitrary individual.

text- fig. 2. Hypothetical scatter diagram
showing the concept of ‘initial index varia-

tion’. The line y = ax+b is the reduced major
axis for a sample, b—bmeans the deviation

for an arbitrary individual.

The ratio between two linear measurements, which is the simplest index, has been

used frequently in fossil biometry. Many authors distinguished one species from another

on the basis of the difference of mean simple ratios. Somebiometricians applied Student’s

t-test for the discrimination of populations. In this case, as shown in text-fig. 1, the

relation of a linear equation: _ v , ny —u i A
f 1

1

is presumed for the growth of each individual. If the average value of a t is defined as a,

the growth of a typical individual is represented by the following equation

:

y —ax
( 2 )
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In this case a
t
—

a

or tan --tan 9 is regarded as the deviation of bivariate character
from the mean. Wemay provisionally call this expression isometric variation.

Someauthors (e.g. Omori and Utashiro 1954) suggested another statistical method to
show the variation of a sample, where the following linear equation was regressed by I

means of the least-squares criterion from all the given individuals:

y = ax+b. (3)

They presumed that the slope a is nearly constant in one species and that the initial

index (y-intercept) b is a variable mainly related to the intraspecific or geographic
variation. In that method, although the presumption of the constancy of a is quite
dubious, the growth of each individual would be expressed by the following formula:

y = ax+bi (4)

where b t or b t —bis regarded as the index for the variation (text-fig. 2).

Such an estimation of variation on the basis of either the slope or the initial index
of a linear equation is, however, generally inadequate, because the relative growth of
an organism is not necessarily linear. The simple ratio between two linear measurements
is actually variable as the organism grows. The histograms of isometric variation would
be apt to be flat-topped (platykurtic) and skewed in comparison with the ideal normal
distribution, if the sample were composed of individuals of different ages (text-fig. 3).

There are several methods for obtaining a regressed line of best-fit. As discussed
by Teissier (1948), Kermack and Haldane (1950), Imbrie (1956), Miller and Kahn
(1962), and others, the method of reduced major axis seems to be more reasonable and
advantageous in biometrical studies than the conventional regression analysis y on x
or x on y. In a statistical study of Cenozoic Argopecten, Waller (1969) found empirically
that the reduced major axis fits a greater variety of point distributions than Bartlett’s

line.

The slope of the reduced major axis is given as

:

( 5 )

where sx and sy are the standard deviations of x and y respectively. If the two variables
of the equation (3) are substituted by the mean values of x and y, the initial index of
this axis is readily determined. Incidentally, the slopes of ordinary regressed lines of

y on x and x on y are given by r.s
y /s x and sjr.s x respectively, where r is the correlation

coefficient between two variables. Because r is positive and smaller than 1, the gradient
of the reduced major axis is equal to the geometric mean of the slopes of two ordinary
regressed lines. Therefore, the reduced major axis is also intuitively more reasonable
than ordinary regressed lines, if the two variables are equal in dimensions.

The initial index of the linear equation, however, may be biologically meaningless,
even if it is obtained by the method of reduced major axis. Moreover, it is a great
difficulty for the methods of ‘initial index variation’ that the state of the frequency
distribution is strongly influenced by the heterogeneity of the sample, especially by
the age distribution within a population. This may be a serious objection in comparing
fossil populations, because the age distribution must be controlled not only by the
biological condition but also by sorting in the process of sedimentation.

On the other hand, it is much more reasonable to consider that a pair of variables,
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which are closely related to growth, increase approximately in accordance with a

non-linear function. This relation has long been called allometry (or heterogony)

(Huxley 1932, Huxley and Teissier 1936, Gould 1966). In this respect isometry is better

PLATYKURTIC

text-fig. 3. Hypothetical frequency distributions

of heterogeneous samples, showing artificially

platykurtic, skewed and bimodal tendencies.

regarded as a special case of allometry. Since the pioneer work of Nomura (1926), a

power equation:
y = ^ (6)

has been generally applied in the study of allometry, where the exponent a is called

the specific growth ratio (or relative growth coefficient) and /3 the initial growth index.

The adequacy of this function has been recognized empirically in many organisms.

As pointed out by some authors (e.g. Shimizu 1959, Rohrs 1961, Gould 1966), the

method of study of ontogenetic allometry may be classified broadly into two categories:

one is the direct examination of individual relative growth, and the other is the estima-

tion of average relative growth deduced from many individuals of various growth
stages. The former is no doubt more advantageous than the latter in many respects

(Gould 1966, Obata 1967), but cannot be pursued in the study of fossils, unless the

C 7719 Q q
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morphology of every growth stage is preserved in an individual. Furthermore, we must
treat the sample representing a population instead of the individual in a quantitative

study of variation. In other words we should focus on the population allometry, paying

attention also to the individual growth.

>v
ir u>

text-fig. 4. Hypothetical scatter diagram text-fig. 5. Data of text-fig. 4 plotted as log x
showing the concept of allometric variation of logy on a double logarithmic paper

a bivariate character. The power function (Z = log x, Y = log y).

y = /3x“ represents the average allometry for

a sample.

The allometric equation (6) is just equivalent to the following linear equation:

logy = a. log x -j- log /3. (7)

The equation of average ontogenetic allometry for a sample can be obtained by the

regression of log y on log x (or vice versa) or more desirably by the method of reduced

major axis with transformation of the original linear measurements into logarithms.

Imbrie (1956) showed empirically that better results would be obtained by the method
of reduced major axis and by the transformation of original bivariate data into log-

arithms. As exemplified in text-figs. 4 and 5, it is reasonable to consider that the

deviation for each individual is well represented by some standardized distance from the

fine of average allometry (= reduced major axis). Although there are several different

methods to measure the deviation, we like to discuss the frequency distribution of the

distance collectively in terms of allometric variation.

REPRESENTATIONOF ALLOMETRICVARIATION

In order to recognize allometric growth it is convenient to plot the original bivariate

data on a double logarithmic paper (see text-fig. 5). If a linear relation was expected
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between log x and log y in the scatter diagram by intuition or high value of correlation

coefficient, a power equation for the average ontogenetic allometry could be justified.

Sometimes, however, the average relative growth of an organism might better be

regarded as a more complicated function. Some authors have expressed such a relation

by the composition of connected lines of different slopes, where ‘di or poly-phasic

allometry’ might be suggested. In such a case the sample may better be split, though

artificially, into several classes of different ontogenetic stages in accordance with the

expected ‘critical point(s)’, before the

equation of average ontogenetic allometry

is determined. Simpson, Roe, and Lewon-

tin (1960, p. 413) and many others intro-

duced such a procedure. In the study of

average allometry, however, this state

may hardly be discriminated from the

gradual change of specific growth ratio.

Therefore, precise examination on the

individual relative growth may be also

necessary for the recognition of ‘poly-

phasic allometry’. This problem was

discussed on a theoretical and biological

basis by Gould (1966). He is of the

opinion that the so-called ‘poly-phasic

allometry’ and ‘critical point(s)’ are

usually nothing but pure artifacts of an

improper procedure [personal communi-

cation from Dr. S. J. Gould (17 September

1969)].

Many authors have assumed that a is

constant in one population or even in one

species and that /3 is related principally

to the individual or geographic variation. Actually, however, the value of a must vary

to some extent among individuals of the same population. This is, in fact, a very trouble-

some problem, because the variability of a could not be clarified without a detailed

analysis of individual growth. Therefore, it is not quite adequate to discuss the variation

by means of the initial growth indices for individuals on the assumption of strictly

parallel lines to the fine of average allometry.

More adequate and easily measurable index is the actual distance from each point

to the line of average allometry (the reduced major axis) on a double logarithmic scatter

diagram (text-fig. 6). At least five kinds of measurements are available for the distance,

namely, 7-distance, Z-distance, diagonal distance, perpendicular distance, and triangle-

root distance. They can be computed in the following manner:

1. 7-distance ( dT ). The distance measured parallel to the 7-axis. If logy and log

x are substituted by 7 and X respectively, the equation of average allometry (7) is

transformed into the following simple formula:

Y=ocX+ log/?. (8)

text-fig. 6. Various distances from the reduced

major axis. A (Z*, 7
4 ) are the coordinates for an

arbitrary individual. dY (= AB): 7-distance; dx
(= AC): Z-distance; d (= AD): diagonal distance;

dP (= AP)
:

perpendicular distance.
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When the coordinates for the point B are designated as (X i} 7'-), the 7-distance for an
arbitrary individual is obviously given as

:

dy = Yi- Y'i = Yi-aXi- log j8. (9)

This index was applied already by Richards and Kavanaugh (1945) and quoted by
Simpson, Roe, and Lewontin (1960) in relation to the analysis of ‘di-phasic’ allometry.

2.

7-distance (d^), the distance measured parallel to the 7-axis. If the coordinates for

the point C are defined as (7;, Yt), the 7-distance is represented as:

IWog/3 -7.

Therefore,
2

-c7,-log/3)V(« 2 +l)
2a

AP
AB

AC
BC

^ AP AB.AC AB.AC
BC

Therefore, dv — dy .d x
V( dy+d'x )

V{(AB) 2 +(AC) 2
}

Yt-a Xj-logfS

V( a2 +i)
’

( 10 )

3.

Diagonal distance (d). Imbrie (1956) suggested that one of the most reasonable

indices for the deviation is the diagonal distance (AD) from each point to the line of

average allometry which is determined by the method of reduced major axis. This

index could be calculated in the following manner:

GO

4.

Perpendicular distance ( dP). This is of course the shortest distance (AP), which is

measured perpendicularly from each point to the line of average allometry. It is

actually similar to the deviation in the method of ‘major axis’, where the fine of best-

fit is obtained by minimizing the sum of the squares of the perpendicular distance.

Kermack and Haldane (1950) and Imbrie (1956) pointed out its inappropriateness for

the determination of the line of average allometry, because its slope may change with

the unit of measurement. In discussing the deviation from the already determined line

of average allometry, however, this distance seems to be one of the meaningful indices.

Because APBA is a similar figure to AABC(see text-fig. 6), the value of perpendicular

distance can be determined in the following manner:

(i2)
:

5.

Triangle-root distance (d R). A reduced major axis is obtained by minimizing the

sum of the areas of triangles AABC. Therefore, the square root of the area of each

triangle may be also a useful index for the deviation, although it can be hardly measured

directly on a scatter diagram

d =
y|

AB.AC
j

_ J^
dy.d x

j

= Yi-aXi-Xogp
(13)

The actual values of these distances are always positive for the points above the fine

of average allometry and always negative for those below the line. This may be a

convenient nature for further statistical treatment.
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As readily recognized from the formulae (9)— (13), the values of these distances are

completely proportional to one another.

dY • dx : d dp : dp — l. V(a 2+l)
.

1
.

1

a 2a ^/(a 2 +l) *j(2oi)
(14)

Therefore, the following relation is also recognized as to the absolute values of distances

for an arbitrary individual:
\d\ > \d R\ > \d P \. (15)

The value of sample standard deviation also depends upon the above proportional

expression (14). Consequently one would obtain essentially the same pattern of fre-

quency distribution, whatever distances might be applied as the index. Every distance

may be applicable for the representation of variation, but, we think, the diagonal

distance is the best, when the two variables are the same in dimensions. However,

provided that one variable is dependent on the other (whorl height of coiling shell

versus volution number for example), it may be desirable to apply the T-distance from
the ordinary regressed line (Y on X).

Generally speaking, the degree of variability should be expressed on the basis of the

value of sample standard deviation (s) in comparison with the sample mean (M), as

Pearson’s coefficient of variation ( V) is defined as

:

v _ 100s_
~Af'

(16)

In discussing the variability of the distance from the reduced major axis, Teissier (1948)

gave the following expression for the variance of diagonal distance, using the vector

sum of dY and dx :

si = &(!— 0(&-h4)} (17)

where sx and s Y are the sample standard deviations of X and Y, and r is the the corre-

lation coefficient between the two variables. As discussed by Imbrie (1956), the value

of the variability of <7_should be represented by the value of sd in comparison with the

joint mean of X and Y.

1 00s ,

j

VCY2+Y 2
)

= ( 1 —/~)(Vy +Yr)
!

2(X 2+ Y2
) r

(18)

(Imbrie (1956) actually gave the coefficient of variability for twice the diagonal distance

of the present usage.) In applying this parameter to this coefficient we could discuss the

variability of a bivariate character. It is generally supposed that the variability of

diagonal distance is smaller than that of the simple ratio, if the relative growth of an
organism is better represented by a power function than a linear equation.

AN EMPIRICAL EVALUATIONOF ALLOMETRICVARIATION ONTHE
BASIS OF ACTUALDATA

As discussed above, it is theoretically certain that the variation of distance from the

line of average allometry (reduced major axis in double logarithmic field) is a more
desirable representation for a bivariate character than that of a simple ratio. Wemight

be able to recognize the advantage of the former method also empirically, if these two
methods were applied independently to the same sample. In the present article we intend

to take a fossil sample of Glycymeris (Bivalvia) as an illustrative example.
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The following is the basic information about the sample here analysed.

Specific name. Glycymeris rotunda (Dunker).

Locality. Loc. 4, Ugari, Fukuroi City, Shizuoka Prefecture, central Japan (collected by A. Matsukuma).
This is probably the same as Loc. 525 described by Makiyama (1941).

Horizon. Hosoya tuffaceous siltstone member of the Kalcegawa group.

Age. Kechienjian stage (Pliocene).

Statistical sample. Only right valves were used. The sample is composed of 203 individuals which were
collected randomly from a fossil bed. They consist of individuals of quite various size, although smaller

ones are relatively abundant (see text-fig. 8).

For the sake of convenience the following characterization is applied for the linear measurements
and related auxiliary variables (see also text-fig. 7).

x: The length of the dental plate measured from the umbo to the posterior extremity.

y: The length of the dental plate measured from the umbo to the anterior extremity.

z: The simple ratio between the two linear measurements (y/x).

X: The common logarithms of x [X = log x].

Y: The common logarithms of y [Y = log y].

The values of x and y were measured strictly along the direction parallel to the basal line of ligament

area. The mensuration was carried out by means of a specially designed comparator which was recently

introduced by Shuto (1969, p. 49).

1 . Analysis of isometric variation

From the bivariate data of the 203 individuals the following fundamental values were

calculated in relation to the isometric variation:

_ 1

203 <4 Xj
1-16651,

V3 = = 10-105.

As shown in text-fig. 9 and also in Table 1, the null hypothesis for goodness-of-fit of

the actual data to a normal distribution is accepted.

Kurtosis is the property of being more pointed or flatter than a normal curve. As

noted by Simpson, Roe, and Lewontin (1960, pp. 146-7), the best measure of kurtosis

(Ks) is given as follows:
x) 4

Ks
Ns4

-3, (19)

where N is the number of individuals and s the sample standard deviation. In this case

we obtained the following value as the kurtosis coefficient for the distribution of z:

Ks = £(*,-z) 4

3
2034

-0-5257.

Because the value is negative, the distribution is flatter than the normal curve and may
be said to be platykurtic. Wepresume that this tendency is partly due to the gradual
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text-fig. 7. Linear measurements (in millimetres) adopted in the present study.

x : The length of dental plate from the umbo to the posterior extremity; y: The
length of dental plate umbo to the anterior extremity.

y

text-fig. 8. Scatter diagram for a sample of Glycymeris rotunda (Dunker) from a fossil

bed of the Kakegawa group at Loc. 4, Ugari, Fukuroi City, Shizuoka Pref., Japan. The
reduced major axis does not fit to the original bivariate data especially in small individuals.
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change of z through the growth of each individual. In fact, the average value of z is

much larger in smaller individuals than in larger ones.

Skewness is a parameter showing the property of asymmetric frequency distribution.

It is commonly given as: y/ _ -x 3

( 20 )

TABLE 1

Calculation of x
2 for goodness-of-fit of the observations of z to a normal distribution

Simple ratio Normal
Observed
frequency

Expected
frequency {Oi-Ed*

Cy/x ) probability m {Ed Ei

z—3s z~z—2sz (0-8128^0-9307) 0-0215 5 4-36 0-0939

z—2sz^z—sz (0-9307~l-0486) 0-1359 32 27-59 0-7049

Z—Sz~Z (1-0486 —1-1665) 0-3413 64 69-28 0-4024

Z'~Z + 5z (l-1665~l-2844) 0-3413 71 69-28 0-0427

z+s z
—z + 2s2 (l-2844~l-4023) 0-1359 30 27-59 0-2105

z+2^ a~z+35 2 (1-4023^1-5202) 0-0215 1 4-36 2-5894

Total 0-9974 203 202-46 4-0438

X
2 = ^ = 4-04 [with 3 degrees of freedom].

Xo-05(V = 3)
= 7-81.

0-25 < P < 0-30.

For reference: If the data of z are regrouped to interval 0-5^, the result of x
2

test is as follows:

X
2 = 11-95 [with 7 degrees of freedom]

Xo-05(„=7) = 14-07.

010 <P < 0-15.

This coefficient is positive in a right-skewed distribution and negative in a left-skewed

distribution. In the present sample the following value was obtained for the skewness

of the distribution of z. _-x 3

sk =^kr = -°- 22S0 -

The left-skewed distribution is possibly related to the sample heterogeneity especially

the relative abundance of small individuals.

Incidentally, we obtained the following values as to the correlation coefficient between

the two linear measurements and the reduced major axis.

r xy —0-9896 [0-9862—0-9921 for the 95 per cent confidence interval],

y = 0-924x-f 0-959.

2. Analysis of allometric variation

The reduced major axis (best-fitted line of average allometry) for the present sample

was determined in the following manner:

0-64791, Y= 0-71253,

sx —0-25213, ^ = 0-21411.
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The following value was obtained for the correlation coefficient between X and Y

:

r XT = 0-9948 [0-9931—0-9961 for the 95% confidence interval].

Therefore, the correlation between the two variables is very significant. The slope of

reduced major axis is given by the formula (5),

a
SY
SX

0-21411

0-25213
= 0-84920.

From the formula (8), log jS = Y—aX.

text-fig. 9 Frequency distribution of z (= y/x). text-fig. 10. Frequency distribution of d (dia-

The broken lines show the expected values in gonal distance from the reduced major axis),

theoretical normal distribution. The broken lines show the expected values in

theoretical normal distribution.

By the substitution of X and Y,

log /3 = 0-71253-0-84920x0-64791 = 0-16232.

Therefore, the reduced major axis for the present sample is represented by the following

equation: 7 = 0-84920X+0- 16232 or y = 1 -4532X 0 ' 84920
.

The standard error of the slope (a) is given as:

Consequently, the interval of a with 95% confidence is:

a± l-96a a = 0-84920±0-01192.

Therefore, the relative growth is certainly allometric. The diagonal distance (d), which
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is measured from each point to this reduced major axis in a double logarithmic field,

is given as

:

d = fi)V0
2 +l) = 0-77245(3^— 0-84920^— 0-16232).

2a

The computation of d for 203 individuals results in:

Z = 0-00002 [negligible]

sd = 0-01697.

Table 2

Calculation of x
2 for goodness-of-fit of the observations of d to a normal distribution

Diagonal distance Normal
Observed
frequency

Expected
frequency (Oi-Eif

(d) probability m CEd Ei

d—3sd d—2sd (- 0-0509 0-0339) 0-0215 4 4-36 0-0297

d-2s d ~ d—

s

d (-0-0339 0-0170) 0-1359 28 27-59 0-0061

d—sd ~ d (-0-0170 ~0) 0-3413 66 69-28 0-1553

d ~ d+s d (0 ~ 0-0170) 0-3413 77 69-28 0-8603

d-\-s d •
' d + 2s d (0-0170 ~ 0-0339) 0-1359 26 27-59 0-0916

d-\-2s d <7+35-(j (0-0339 ~ 0-0509) 0-0215 2 4-36 1-2774

Total 0-9974 203 202-46 2-4204

2 (0 £V)2—%

^
1 —2-42 [with 3 degrees of freedom].

Xo*05(V = 3)
= 7-81.

0-40 < P < 0-50.

For reference: If the data of d are regrouped to interval Q-5s d , the result of x
2 tests is as follows:

X
2 = 10-00 [with 7 degrees of freedom].

Xo-o5(x=7>
= 14-07.

0-15 <P <0-20.

If the formula (18) were applied for the estimation of variability, the coefficient of

variation might be shown:

v 1 100^ = 1-697 = .

d
V(^

2+^ 2
) V(0-6479

2 +0-7125 2
)

As shown in text-fig. 10 and also Table 2, the frequency distribution of d is also re-

garded as normal. The distribution seems to be also platykurtic in view of the negative

value of kurtosis coefficient

:

Ks = 3
2034

-0-3570.

The skewness for the distribution of d is given as

:

= m-ir
2034

-0-0292.

It means a slightly left-skewed distribution.
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3. Comparisons and discussions

Now, we intend to compare the result obtained by the method of diagonal distance

with that by the method of simple ratio. The obtained value of sample correlation

coefficient between X and Y is significantly higher than that between x and y. We
presume that the appropriateness of the index for a bivariate character is indicated to a

certain extent by the smallness of the coefficient of variation. Although direct com-

parison may not be meaningful, the value of Vd is obviously much smaller than Vz .

The result of x
2 test for the frequency distribution of d supports the null hypothesis

of a normal distribution. The value of x
2 (with the same degrees of freedom) is more or

less smaller and the probability for a normal distribution higher than those for the

distribution of z (Tables 1 and 2). In this respect the pattern of histogram of d is more
safely assumed to fit a theoretical normal curve than is that of z.

As to the coefficients of kurtosis and skewness, a similar assumption is possible. The
values of Ks and Sk indicate that the frequency distribution of d is less platykurtic and

less left-skewed than that of z.

As indicated in text-fig. 8, neither the isometric line, y = IT 665 lx, nor the reduced

major axis, y = 0-924x-f0-959, fits the original bivariate data. On the other hand,

as shown in text-fig. 11, the reduced major axis in double logarithmic field seems to

represent well the relative growth of this sample. Therefore, so far as the present

sample is concerned, monophasic allometry is well recognized. Judging from the

comparative data aforementioned, it is concluded empirically that the diagonal distance

from the reduced major axis is a more desirable index for the expression of a bivariate

character than is the simple ratio between two variables.

STATISTICAL DEFINITION OF ‘ISOMETRY’ AND‘ALLOMETRY’

In order to identify or to discriminate samples purely statistically, Imbrie (1956) and

Miller and Kahn (1962) introduced a method of significance test for the difference of

two reduced major axes. It is, in fact, a very useful method, if the relative growth of

each sample shows monophasic allometry.

The standard errors of the slopes or reduced major axes are given as:

( 21 )

( 22 )

where oq and a 2 are the slopes of two reduced major axes, r 1 and r 2 are the correlation

coefficients between two variables and Nx and N2 are the numbers of individuals in

respective samples. Provided that the numbers of individuals are not too small, one can

recognize by means of the following value whether the difference of slopes is significant

or not „ —a
z =

M,Tk)'
(23)

If |Z| < T96, the difference of slopes is not significant with 95% confidence, and if

|Z| > T96, the two samples can be discriminated by the difference of specific growth

ratio.
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text-fig. 1

1

. Double logarithmic scatter diagram for a sample of Glycymeris rotunda

(Dunker) [the same sample as shown in text-fig. 8.] Because the reduced major axis

fit well to the data, the relative growth can be regarded as monophasic.

Applying the method of this significance test, we can define statistically the terms of

‘isometry’ and ‘allometry’. In the case of ideal isometry, though such a state is actually

non-existent, the slope is, of course, strictly equal to 1 without error. Consequently, if

the value of Z is calculated by the following equation

:

Z = (24)

one can judge with 95% confidence whether the relative growth is isometric or allo-

metric, as follows:

if —1 -96 < Z < 1 -96, the null hypothesis for ‘isometry’ would be accepted,

if Z < —1 -96, negative allometry would be suggested, and

if Z > 1-96, positive allometry would be suggested.

Because the simple ratio between two variables is an index on the assumption of

isometry, the allometric variation is certainly a more reasonable representation than the
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isometric one, if the null hypothesis were rejected by the above-mentioned significance

test.

text-fig. 12 . Statistical discrimination of ‘isometry’ and
‘allometry’. N: number of individuals. Confidence 95%.

CONCLUDINGREMARKS
It would be logically inadequate to discuss the variation of a bivariate character

without considering the relative growth of the organism, if the sample is composed
of individuals of various growth stages. If the simple ratio between two linear measure-
ments were used as the index, we might have much trouble in analysing the real state
of variation, especially in applying advanced statistical techniques for the recognition
of a normal distribution of character and random sampling as well as taxonomic
identification or discrimination. As pointed out by Simpson, Roe, and Lewontin
(1960), a platykurtic and skewed distribution may be due to the heterogeneity of sample.
In the analysis of bivariate characters it is necessary to apply an index which is less

influenced by the age distribution.
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On the other hand, if the organism proved to grow approximately in accordance

with a simple power function, the individual variation within a sample could be analysed

more reasonably by means of the distance from each point to the line of average alio-
I

metry on a double logarithmic scatter diagram. Although at least five kinds of distance
I

(d Y ,
dx ,

d, dP,
and dR in this paper) are available for the index, this representation may

be collectively called allometric variation. It is believed that this representation is more
advantageous than the conventional method of simple ratio in the following respects:

1. The coefficient of variation may be reasonably small in comparison with that of

simple ratio.

2. The standard deviation, skewness, and kurtosis as well as the shape of the histo-

gram may be scarcely, if not at all influenced by the age distribution in a population

and other sample heterogeneity.

3. Normal frequency distribution of bivariate characters would be recognized more
reasonably on a firm basis.

4. The tendency for artificially skewed and platykurtic distribution could be avoided.

5. A comparison between different samples could be well based on the significance

test for the difference of slopes and positions of reduced major axes. This procedure

was fully explained by Imbrie (1956, pp. 235-8). The contingency of age distribution in

samples might be negligible also in this case.

6. As pointed out by Gould (1966), the study of average allometry may not be an

adequate approach to individual ontogeny, when strong natural selection takes place.

The present analysis of allometric variation, however, is considered to be sometimes

informative also for the consideration of the influence of natural selection and environ-

mental factors.

The advantage of this method is also recognized empirically by a comparative study

in which a sample of fossil Glycymeris from the Pliocene of Japan is treated as an

illustrative example.

As noted by Kotaka (1953), the method of rejection ellipse may be a useful method
for taxonomic identification and discrimination of fossil populations. In discussing the

relation of characters on the basis of simple ratios, however, this approach may bear

some difficulty, unless the ontogenetic transformation and the age distribution of samples
j

are sufficiently considered.

On the contrary it may be an objection that the present method is somewhat time-
j

consuming to justify its general application. More complicated techniques would be

required in the organisms showing ‘polyphasic’ allometry. The recent rapid development
j

of computers, however, would make the application easy, and, we believe, biometricians
s

should not mind taking this trouble.
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